Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Naphthalene-1,6-diol: a threedimensional framework built from
 $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \pi$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds

Bernard Marciniak

Institute of Chemistry and Environment Protection, Jan Dlugosz University, al. Armii Krajowej 13/15, 42-200 Czestochowa, Poland
Correspondence e-mail: crystal@cz.onet.pl

Received 6 April 2007
Accepted 30 May 2007
Online 23 June 2007
The asymmetric unit of the title compound, $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{2}$, contains two practically planar symmetry-independent molecules linked by one $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. Molecules are further linked into a three-dimensional network, which is built from $R_{6}^{6}(36), R_{6}^{6}(18), R_{6}^{6}(30)$ and $R_{4}^{4}(26)$ rings formed by the combined effect of three $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and one $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. This network is additionally stabilized by an $\mathrm{O}-\mathrm{H} \cdots \pi$ interaction.

Comment

This paper is a continuation of our structural studies of monoand dihydroxynaphthalenes, which are a class of intermediates important for applications in the synthesis of dyes, tanning agents, antioxidants and antiseptics. In the previous papers, the structures of 1-hydroxynaphthalene (1-naphthol; Rozycka-Sokolowska et al., 2004), 2-hydroxynaphthalene (2naphthol; Marciniak et al., 2003), 1,3-dihydroxynaphthalene
(naphthalene-1,3-diol; Marciniak et al., 2006), 1,7-dihydroxynaphthalene (naphthalene-1,7-diol; Marciniak, 2007) and 2,7dihydroxynaphthalene (naphthalene-2,7-diol; Rozycka-Sokolowska et al., 2005) have been reported, and the results of structural studies of naphthalene-1,6-diol, (I), are presented here.

(I)

As in the case of the other naphthalenediol isomers, such as naphthalene-1,7-diol (Marciniak, 2007), naphthalene-2,3-diol and naphthalene-2,6-diol (Belskii et al., 1990), in the structure of the title compound there are two symmetry-independent molecules, A and B, in the asymmetric unit, which are linked by an $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Fig. 1 and Table 2). The $\mathrm{C}-$ C bond distances range from 1.351 (3) to 1.425 (3) \AA in molecule A and from 1.337 (3) to 1.413 (3) \AA in molecule B (Table 1). In each molecule, four $\mathrm{C}-\mathrm{C}$ bonds, viz. $\mathrm{C} 1 A-\mathrm{C} 2 A$,

Figure 1
Views of molecules A (left) and B (right), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed line depicts the intermolecular hydrogen bond.

Figure 2
Part of the crystal structure of (I), showing the $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (dashed lines, see Table 1 for details), as well as the $C(8)$ chains (atoms belonging to this chain are represented by spheres) and the $R_{6}^{6}(36)$ rings. All H atoms not involved in these hydrogen bonds have been omitted for clarity.

organic compounds

Figure 3
Part of the crystal structure of (I), showing the $R_{6}^{6}(18)$ and $R_{6}^{6}(30)$ rings formed by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (shown as dashed lines); symmetry codes are as given in Table 1 . In order to differentiate molecules A and B, all H atoms of molecules A are included, while the H atoms of molecules B, except for atoms $\mathrm{H} 11 B$ and $\mathrm{H} 12 B$, have been omitted.

Figure 4
Part of the crystal structure of (I), showing the $R_{4}^{4}(26)$ rings formed by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (grey dashed lines), as well as the intermolecular $\mathrm{O}-\mathrm{H} \cdots \pi$ interactions (black dashed lines). Symmetry codes are as given in Table 1; the centroid (Cg1) of the $\mathrm{C} 1 A-\mathrm{C} 5 A / \mathrm{C} 10 A$ benzene ring is denoted by a small sphere. In order to differentiate molecules A and B, all H atoms of molecules A are included, while the H atoms of molecules B, except for atoms $\mathrm{H} 11 B$ and $\mathrm{H} 12 B$, have been omitted.
$\mathrm{C} 3 A-\mathrm{C} 4 A, \mathrm{C} 6 A-\mathrm{C} 7 A$ and $\mathrm{C} 8 A-\mathrm{C} 9 A$, and $\mathrm{C} 1 B-\mathrm{C} 2 B$, $\mathrm{C} 3 B-\mathrm{C} 4 B, \mathrm{C} 6 B-\mathrm{C} 7 B$ and $\mathrm{C} 8 B-\mathrm{C} 9 B$, are shorter than the typical aromatic bond length of $1.384(13) \AA$ (Allen et al., 1987), whereas all the other bonds are longer; the valence angles within the aromatic rings of these molecules lie in the ranges 118.4 (2)-122.6 (2) and 118.8 (2)-122.4 (2) ${ }^{\circ}$, respectively (Table 1). The naphthalene $\mathrm{C} 1 A-\mathrm{C} 10 A$ and $\mathrm{C} 1 B-\mathrm{C} 10 B$ ring systems are practically planar, with largest out-of-plane deviations of 0.049 (2) and -0.027 (2) \AA for atoms $\mathrm{C} 1 A$ and $\mathrm{C} 1 B$, respectively. The O atoms attached to these rings at atoms $\mathrm{C} 1 A, \mathrm{C} 7 A, \mathrm{C} 1 B$ and $\mathrm{C} 7 B$ deviate from the planes of
these rings by only $0.130(2), 0.029(2),-0.062(2)$ and -0.056 (2) \AA, respectively. The angle between the mean planes formed by the C atoms of molecules A and B is $81.46(7)^{\circ}$. This value is in close agreement with that observed for the other naphthalenediol isomer containing two independent molecules, viz. naphthalene-1,7-diol [the dihedral angle between the mean planes formed by the C atoms of the two independent molecules is 78.97° (Marciniak, 2007)], and it is about 25° less than the value of this parameter observed for naphthalene-2,3-diol (Belskii et al., 1990). This noncoplanar orientation of two symmetry-independent molecules observed in (I) is in contrast to the nearly coplanar orientation of the independent molecules observed in naphthalene-2,6-diol [the dihedral angle between the mean planes formed by the C atoms of the two independent molecules is $4.6(4)^{\circ}$ (Belskii et al., 1990)].

Apart from the above-mentioned $\mathrm{O} 1 B-\mathrm{H} 11 B \cdots \mathrm{O} 1 A$ hydrogen bond, the crystal structure of (I) contains two intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and one intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Table 2 and Figs. 2-4). The $\mathrm{O} 1 A-\mathrm{H} 11 A \cdots \mathrm{O} 2 A^{\mathrm{i}}$ interactions [symmetry code: (i) $-x$, $\left.y-\frac{1}{2},-z+\frac{1}{2}\right]$ link the A molecules into a $C(8)$ chain (Bernstein et al., 1995) running parallel to the [010] direction (Fig. 2). The A molecules belonging to the $C(8)$ chains are connected to B molecules by two $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, viz. $\mathrm{O} 1 B-$ $\mathrm{H} 11 B \cdots \mathrm{O} 1 A$ and $\mathrm{O} 2 A-\mathrm{H} 12 A \cdots \mathrm{O} 2 B^{\mathrm{ii}}$ [symmetry code: (ii) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$], which are classified as D on the first-level graph set (Bernstein et al., 1995). The combined effect of these three $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds is the formation of a puckered sheet parallel to the (001) plane containing $R_{6}^{6}(36)$ rings (Fig. 2). The non-H atoms belonging to the (001) sheets lie in the domains $(-0.05+z / 2)<c<(0.55+z / 2)$ (where z is zero or an integer). Moreover, each such sheet is linked to two neighbouring sheets by a classical $\mathrm{O}-\mathrm{H} \cdots \pi$ hydrogen bond and a weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond to form a continuous three-dimensional network (Fig. 4). Atom O2B in molecule B at (x, y, z), belonging to the sheet in domain $-0.05<c<0.55$, acts as a hydrogen-bond donor, via atom $\mathrm{H} 12 B$, to the $\mathrm{C} 1 A-$
$\mathrm{C} 5 A / \mathrm{C} 10 A$ benzene ring of molecule A at $\left(x+1,-y+\frac{1}{2}, z+\frac{1}{2}\right)$, which belongs to the adjacent sheet in domain $0.45<c<1.05$. As mentioned above, the structure of (I) also displays a C $\mathrm{H} \cdots \mathrm{O}$ interaction, which links atom $\mathrm{C} 9 A$ of molecule A at $(x$, $y, z)$, via H9A, with atom O1B at $\left(x,-y+\frac{1}{2}, z-\frac{1}{2}\right)$, and this can be described by the graph-set notation D (Fig. 2 and Table 1). A detailed analysis of the three-dimensional network indicates that, apart from the above-mentioned $R_{6}^{6}(36)$ rings, this network contains $R_{6}^{6}(18)$ and $R_{6}^{6}(30)$ rings formed by the combined effect of the $\mathrm{O} 1 B-\mathrm{H} 11 B \cdots \mathrm{O} 1 A$, $\mathrm{O} 1 A-$ $\mathrm{H} 11 A \cdots \mathrm{O} 2 A^{\mathrm{i}}$ and $\mathrm{C} 9 A-\mathrm{H} 9 A \cdots \mathrm{O} 1 B^{\mathrm{iii}}$ hydrogen bonds (Fig. 3), as well as $R_{4}^{4}(26)$ rings by a combination of the C9 $A-$ $\mathrm{H} 9 A \cdots \mathrm{O} 1 B^{\mathrm{iii}}$ and $\mathrm{O} 2 A-\mathrm{H} 12 A \cdots \mathrm{O} 2 B^{\mathrm{ii}}$ hydrogen bonds [symmetry code: (iii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$] (Fig. 4).

Experimental

The starting material was commercially available naphthalene-1,6diol (Sigma Aldrich, purity 99%), which was purified by twofold crystallization from anhydrous ethanol (no impurities were detected by gas chromatography). Crystals of (I) were grown from solution in chloroform by slow evaporation of this solvent at a constant temperature of 293 K .

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{2}$
$M_{r}=160.16$
Monoclinic, $P 2_{1} / c$
$a=11.5109(19) \AA$
$b=16.822(3) \AA$
$c=7.9362(19) \AA$
$\beta=93.034(17)^{\circ}$
Data collection
Oxford Diffraction Xcalibur3 CCD
diffractometer
Absorption correction: analytical
\quad (CrysAlis $R E D$; Oxford
Diffraction, 2005)
$T_{\text {min }}=0.996, T_{\text {max }}=0.999$
$V=1540.1(5) \AA^{3}$
$Z=8$
Mo $K \alpha$ radiation
$\mu=0.10 \mathrm{~mm}^{-1}$
$T=290$ (2) K
$0.39 \times 0.33 \times 0.06 \mathrm{~mm}$

Data collection
Oxford Diffraction Xcalibur3 CCD diffractometer
Absorption correction: analytical Diffraction, 2005)
$T_{\text {min }}=0.996, T_{\text {max }}=0.999$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.058$
$w R\left(F^{2}\right)=0.140$
$S=1.18$
2709 reflections
238 parameters
5 restraints

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{O} 1 A-\mathrm{C} 1 A$	1.363 (3)	O1B-C1B	1.357 (3)
$\mathrm{O} 2 A-\mathrm{C} 7 A$	1.368 (3)	$\mathrm{O} 2 B-\mathrm{C} 7 B$	1.371 (3)
$\mathrm{C} 1 A-\mathrm{C} 2 A$	1.359 (3)	$\mathrm{C} 1 B-\mathrm{C} 2 B$	1.345 (3)
$\mathrm{C} 1 A-\mathrm{C} 10 A$	1.425 (3)	$\mathrm{C} 1 B-\mathrm{C} 10 B$	1.409 (3)
$\mathrm{C} 2 A-\mathrm{C} 3 A$	1.397 (3)	$\mathrm{C} 2 B-\mathrm{C} 3 B$	1.398 (4)
$\mathrm{C} 3 A-\mathrm{C} 4 A$	1.351 (3)	C3B-C4B	1.346 (3)
$\mathrm{C} 4 A-\mathrm{C} 5 A$	1.415 (3)	$\mathrm{C} 4 B-\mathrm{C} 5 B$	1.400 (3)
C5 A - С6 A	1.406 (3)	C5B-C6B	1.405 (3)
C5A-C10A	1.412 (3)	$\mathrm{C} 5 B-\mathrm{C} 10 \mathrm{~B}$	1.413 (3)
$\mathrm{C} 6 A-\mathrm{C} 7 A$	1.365 (3)	C6B-C7B	1.337 (3)
$\mathrm{C} 7 A-\mathrm{C} 8 A$	1.401 (3)	$\mathrm{C} 7 B-\mathrm{C} 8 B$	1.400 (3)
$\mathrm{C} 8 A-\mathrm{C} 9 A$	1.352 (3)	C8B-C9B	1.350 (3)
$\mathrm{C} 9 A-\mathrm{C} 10 A$	1.402 (3)	$\mathrm{C} 9 \mathrm{~B}-\mathrm{C} 10 \mathrm{~B}$	1.394 (3)
$\mathrm{C} 2 A-\mathrm{C} 1 A-\mathrm{O} 1 A$	123.6 (2)	$\mathrm{C} 2 B-\mathrm{C} 1 B-\mathrm{O} 1 B$	123.3 (2)
$\mathrm{C} 2 A-\mathrm{C} 1 A-\mathrm{C} 10 A$	120.5 (2)	$\mathrm{C} 2 B-\mathrm{C} 1 B-\mathrm{C} 10 B$	121.0 (2)
$\mathrm{O} 1 A-\mathrm{C} 1 A-\mathrm{C} 10 A$	115.9 (2)	$\mathrm{O} 1 B-\mathrm{C} 1 B-\mathrm{C} 10 B$	115.7 (2)
$\mathrm{C} 1 A-\mathrm{C} 2 A-\mathrm{C} 3 A$	120.4 (2)	$\mathrm{C} 1 B-\mathrm{C} 2 B-\mathrm{C} 3 B$	119.4 (2)
$\mathrm{C} 4 A-\mathrm{C} 3 A-\mathrm{C} 2 A$	120.8 (2)	$\mathrm{C} 4 B-\mathrm{C} 3 B-\mathrm{C} 2 B$	122.0 (2)
$\mathrm{C} 3 A-\mathrm{C} 4 A-\mathrm{C} 5 A$	120.8 (2)	$\mathrm{C} 3 B-\mathrm{C} 4 B-\mathrm{C} 5 B$	119.9 (2)
$\mathrm{C} 6 A-\mathrm{C} 5 A-\mathrm{C} 10 A$	118.5 (2)	$\mathrm{C} 4 B-\mathrm{C} 5 B-\mathrm{C} 6 B$	122.1 (2)
$\mathrm{C} 6 A-\mathrm{C} 5 A-\mathrm{C} 4 A$	122.6 (2)	$\mathrm{C} 4 B-\mathrm{C} 5 B-\mathrm{C} 10 B$	119.0 (2)
$\mathrm{C} 10 A-\mathrm{C} 5 A-\mathrm{C} 4 A$	118.9 (2)	$\mathrm{C} 6 B-\mathrm{C} 5 B-\mathrm{C} 10 B$	118.9 (2)
$\mathrm{C} 7 A-\mathrm{C} 6 A-\mathrm{C} 5 A$	120.5 (2)	$\mathrm{C} 7 B-\mathrm{C} 6 B-\mathrm{C} 5 B$	120.4 (2)
$\mathrm{C} 6 A-\mathrm{C} 7 A-\mathrm{O} 2 A$	119.1 (2)	$\mathrm{C} 6 B-\mathrm{C} 7 B-\mathrm{O} 2 B$	117.9 (2)
$\mathrm{C} 6 A-\mathrm{C} 7 A-\mathrm{C} 8 A$	120.4 (2)	$\mathrm{C} 6 B-\mathrm{C} 7 B-\mathrm{C} 8 B$	121.0 (2)
$\mathrm{O} 2 A-\mathrm{C} 7 A-\mathrm{C} 8 A$	120.5 (2)	$\mathrm{O} 2 B-\mathrm{C} 7 B-\mathrm{C} 8 B$	121.2 (2)
$\mathrm{C} 9 A-\mathrm{C} 8 A-\mathrm{C} 7 A$	120.3 (2)	$\mathrm{C} 9 B-\mathrm{C} 8 B-\mathrm{C} 7 B$	120.1 (2)
$\mathrm{C} 8 A-\mathrm{C} 9 A-\mathrm{C} 10 A$	120.7 (2)	$\mathrm{C} 8 B-\mathrm{C} 9 B-\mathrm{C} 10 \mathrm{~B}$	120.8 (2)
$\mathrm{C} 9 A-\mathrm{C} 10 A-\mathrm{C} 5 A$	119.5 (2)	$\mathrm{C} 9 B-\mathrm{C} 10 B-\mathrm{C} 1 B$	122.4 (2)
$\mathrm{C} 9 A-\mathrm{C} 10 A-\mathrm{C} 1 A$	122.1 (2)	$\mathrm{C} 9 B-\mathrm{C} 10 B-\mathrm{C} 5 B$	118.8 (2)
$\mathrm{C} 5 A-\mathrm{C} 10 A-\mathrm{C} 1 A$	118.4 (2)	$\mathrm{C} 1 B-\mathrm{C} 10 B-\mathrm{C} 5 B$	118.8 (2)

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).
$C g 1$ is the centroid of the $\mathrm{C} 1 A-\mathrm{C} 5 A / \mathrm{C} 10 A$ benzene ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 A-\mathrm{H} 11 A \cdots \mathrm{O} 2 A^{\mathrm{i}}$	$0.86(3)$	$1.89(3)$	$2.726(3)$	$165(3)$
$\mathrm{O} 1 B-\mathrm{H} 11 B \cdots \mathrm{O} 1 A$	$0.84(2)$	$1.96(2)$	$2.783(3)$	$169(3)$
$\mathrm{O} 2 A-\mathrm{H} 12 A \cdots \mathrm{O} 2 B^{\mathrm{ii}}$	$0.83(2)$	$1.91(2)$	$2.737(3)$	$176(2)$
$\mathrm{C} 9 A-\mathrm{H} 9 A \cdots \mathrm{O} 1 B^{\mathrm{iii}}$	$0.95(2)$	$2.54(2)$	$3.191(3)$	$126(2)$
$\mathrm{O} 2 B-\mathrm{H} 12 B \cdots \mathrm{Cg}^{\text {iv }}$	$0.84(2)$	$2.55(3)$	$3.243(2)$	$140(3)$

Symmetry codes: (i) $-x, y-\frac{1}{2},-z+\frac{1}{2}$; (ii) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$; (iii) $x,-y+\frac{1}{2}, z-\frac{1}{2}$;
(iv) $x+1,-y+\frac{1}{2}, z+\frac{1}{2}$.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK3120). Services for accessing these data are described at the back of the journal.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Belskii, V. K., Kharchenko, E. V., Sobolev, A. N., Zavodnik, V. E., Kolomiets, N. A., Prober, G. S. \& Oleksenko, L. P. (1990). Zh. Strukt. Khim. (J. Struct. Chem.), 31, 116-121.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1575.
Brandenburg, K. (2006). DIAMOND. Release 3.1.d. Crystal Impact GbR, Bonn, Germany.
Marciniak, B. (2007). Acta Cryst. C63, o252-o254.
Marciniak, B., Rozycka-Sokolowska, E. \& Pavlyuk, V. (2003). Acta Cryst. E59, o52-o53.
Marciniak, B., Rozycka-Sokolowska, E. \& Pavlyuk, V. (2006). Acta Cryst. C62, o68-o70.

organic compounds

Oxford Diffraction (2004). CrysAlis CCD. Version 1.170. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
Oxford Diffraction (2005). CrysAlis RED. Version 1.171. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England.
Rozycka-Sokolowska, E., Marciniak, B. \& Pavlyuk, V. (2004). Acta Cryst. E60, o884-o885.

Rozycka-Sokolowska, E., Marciniak, B. \& Pavlyuk, V. (2005). Acta Cryst. E61, o114-o115.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

